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Abstract 
Carsharing has emerged as an alternative to 

vehicle ownership and is a rapidly expanding global 
market. Particularly through the flexibility of free-
floating models, carsharing complements public 
transport since customers do not need to return cars 
to specific stations. We present a novel data analytics 
approach that provides decision support to 
carsharing operators – from local start-ups to global 
players – in maneuvering this constantly growing and 
changing market environment. Using a large set of 
rental data, as well as zero-inflated and 
geographically weighted regression models, we 
derive indicators for the attractiveness of certain 
areas based on points of interest in their vicinity. 
These indicators are valuable for a variety of 
operational and strategic decisions. As a 
demonstration project, we present a case study of 
Berlin, where the indicators are used to identify 
promising regions for business area expansion.  
 
 
1. Introduction  
 

Through air pollution, emissions, and traffic jams, 
the progressing urbanization witnessed around the 
globe substantially reduces the quality of life of the 
very people that are drawn to the cities. While public 
transportation networks are growing, they continue to 
face obstacles with respect to public perception and 
flexibility. To serve the entire area at low cost, bus 
and train services often use neither the quickest nor 
the shortest route. Commuters are also bound by 
fixed departure and arrival times. This lack of 
flexibility prevents people from renouncing car 
ownership; yet, once a car is owned, the willingness 
to use public transportation decreases substantially 
[23]. Thus, people continue to rely on their own cars, 
thereby contributing to pollution, congestion, and the 
impending infarct of urban centers. 

Free-floating carsharing has emerged as a 
possible solution to this dilemma. In contrast to one-
way or round-trip carsharing models with fixed 
parking lots, the free-floating model allows 

customers to return the car anywhere within the 
operation area [34]. Driven by this flexibility, it 
complements public transportation with both 
components integrated into a hybrid transportation 
system. The popularity of carsharing has increased 
tremendously in recent years. In North America, 
membership has grown from approximately 16,000 in 
2002 up to more than one million at the beginning of 
2013 [26] – a compound annual growth rate of more 
than 45 percent. Customers can easily locate, reserve, 
and pay for the closest vehicle through smartphone 
applications and an online payment system, while an 
RFID card provides access to the vehicle. From an 
ecological and economical point of view, carsharing 
contributes to saving fuel, reducing accidents, and 
decreasing the total number of cars on the streets, 
thereby reducing CO2 emissions [6, 10, 8]. 

This growth in popularity and demand causes 
providers to constantly adapt their network, balance 
their vehicle capacities, and search for new regions to 
expand into. Currently, this process is often ad-hoc, 
with operators relying largely on general long-term 
strategies. Hence, a detailed business analysis can 
provide a substantial competitive advantage in the 
permanently changing market environment. Big Data 
analytics has emerged as an important field of IS 
research to improve timely business decisions [12]. 
Hence, the research presented in this paper employs a 
novel business analytics methodology to support the 
operation and management decisions of free-floating 
carsharing providers. 

For this purpose, we cooperate with a globally 
leading carsharing provider and analyze the usage 
behavior of thousands of carsharing customers. This 
includes the analyses of millions of rentals from 
April 2012 through October 2013 in Berlin. 
Furthermore, we investigate whether specific 
locations (points of interest, POIs) influence the 
attractiveness of the surrounding area as destinations 
for carsharing customers. Thus, our first research 
question is: 

Research Question 1: What is the impact of 
different points of interest on the driving behavior of 
carsharing customers? 
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We investigate this question empirically by 
relating the demand for a vehicle to surrounding 
points of interest. In addition to rental data and more 
than 180,000 POIs, our analysis also relies on census 
data, which is included as a control variable. We 
account for spatial variation by dividing the operating 
area into thousands of finely-granulated sub-areas, 
relating to the data mining research for geo-spatial 
Big Data [24]. The influence of each POI type, such 
as shopping malls or night clubs, on carsharing 
activity is determined through a zero-inflated Poisson 
regression. To validate this approach, we compare the 
results of the zero-inflated model to a geographically 
weighted regression, which leads to the following 
research question: 

Research Question 2: Are the empirical results 
substantially changed when allowing coefficients to 
vary locally? 

If the global regression coefficients serve well to 
explain the spatial behavior of carsharing customers, 
we are able to calculate the expected vehicle demand 
not only at locations within the operation area, but 
also for new areas. Hence, our final research 
questions is: 

Research Question 3: What is the benefit of the 
presented approach with respect to strategic decisions 
concerning the expansion of the operation area? 

Ultimately, our approach seeks to support 
carsharing providers in making decisions concerning 
the adaption and expansion of the operating area, as 
well as fleet balancing and management. In the next 
section, we will provide a brief overview on related 
work, before we address the research questions 
successively in the remainder of the paper. 
 
2. Related Work 
 

The history of carsharing dates back to the year 
1948 when a housing cooperative founded the 
SEFAGE (“Selbstfahrgemeinschaft”) in Zurich [11, 
27]. Between the late 1980s and the 1990s, 
carsharing became more common, particularly in 
several European countries, such as Germany, 
Switzerland, and the Netherlands [28], but also in the 
U.S. [19], [14]. However, the share of costumers in 
the entire population was still very low (0.52‰). 
 
2.1 Round-trip and one-way systems 
 

Traditional, station-based, carsharing business 
models include the round-trip and the one-way 
concepts. In general, round-trip carsharing is strict 
and rather inflexible, since customers have to return 
cars to the station they started from [2]. Round-trip 

research is no longer actively conducted because the 
more flexible one-way concept has emerged. This 
model allows customers to arbitrarily choose a station 
to return the rented vehicle at. Consequently, 
researchers have to face a new challenge of temporal 
and spatial imbalances between vehicle supply and 
demand. 

Barth et al. [3] introduce a user-based relocation 
mechanism that urges customers to share or split 
rides depending on the system demand. Kek et al. 
[18] test a decision support system for vehicle 
relocation on commercial data from a carsharing 
company in Singapore. Their results indicate a 
reduction in staff costs of 50% and the number of 
relocations by 37.1% to 41.1%. Further case studies 
and simulations for one-way carsharing are 
performed to establish models that seeks to optimize 
the imbalance between supply and demand [6, 4, 15]. 

As in our research, Stillwater et al. [30] provide a 
geographic IS based study to explain carsharing 
demand using built-environment and demographic 
data. While they argue that recent research is only 
partially able to find characteristics of neighborhoods 
that make carsharing successful, we will elaborate on 
these factors in the course of this paper. 

 
2.2 Free-floating systems 
 

As a result of increased demand for carsharing 
services, an extension of the one-way trip concept 
emerged known as “free-floating” carsharing. This 
concept allows users to leave the rented car anywhere 
within the provider’s operation area. Thus, it 
increases flexibility on the consumer side but also 
complexity in terms of balancing supply and demand 
on the provider side. Previous research on free-
floating systems focuses mainly on relocation 
strategies, for instance through a two-step relocation 
algorithm consisting of an offline and online module 
[34]. While the former pre-calculates possible 
relocation strategies based on historical data, the 
latter measures the current state and selects the best 
relocation strategy. Various empirical studies 
examine the impact of free-floating carsharing on 
other means of transportation and environmental 
effects [9, 10]. Results indicate a reduction of CO2-
emissions and the overall number of vehicles in a 
city. 

Finally, several studies attempt to investigate the 
criteria an urban region should have to establish a 
successful business. Millard-Ball et al. [21] show that 
most conducted rentals are associated with several 
points of interest, such as grocery stores or shops, 
while only 12% of all trips are work related. Celsor 
and Millard-Ball [5] found that neighborhood and 
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public transport are more important success 
indicators for carsharing than the demographic 
characteristics of customers. 

Melville [20] notes the important contributions 
information systems can have on sustainable 
transportation. However, while Degirmenci and 
Breitner [25] discuss a DSS to determine optimal 
locations for prospective stations, carsharing as one 
component of sustainable transportation has received 
very little attention from IS research [7]. 

 
2.3 Research Gap 
 

Currently, carsharing providers lack sophisticated 
decision support to determine expansion and 
operation strategies. The research presented in this 
paper builds upon neighborhood characteristics that 
have already been identified as important 
determinants for a successful carsharing business in 
the literature. We develop a novel data-driven 
method to estimate carsharing demand based on 
points of interest and emphasize the tremendous 
impact IS research can have on the success of 
emerging sustainable transportation services.  

 
3. Descriptive Statistics and Visualization 
 

Since customers are allowed to park a rented 
vehicle at any location within a predefined area under 
a free-floating concept, fleet control becomes a major 
challenge. However, to our best knowledge, none of 
the recent publications investigated the influence of 
neighborhood features on the vehicle demand of a 
carsharing provider. As one of the main contributions 
of this paper, we conduct an extensive case study for 
the city of Berlin in cooperation with a globally 
leading carsharing provider. Rental data of 1,200 
shared vehicles was collected over a period of 1 year. 
This includes more than one million trips conducted 
by a customer base of more than 55,000 members in 
total. We collected different types of anonymized 
information, for example, the GPS coordinates of the 
start and end position of each trip. Thereby, the 
customers themselves do not have to provide any 
information regarding the trip, such as the final 
destination or details on additional passengers. 

The operation area encloses a region of almost 
300km². Making decisions based on data of this 
volume and incorporating various sources, such as 
rental data, POIs, and demographic information, 
fulfills two main classifications of IBM’s Big Data 
definition [1]. To keep on track, managers are 
consistently faced with changes, such as increasing 
vehicle fleets, new customers, or changes in the 

urban built environment. Even small variations like 
the inclusion or exclusion of a large shopping mall 
can result in substantial profits or losses. Therefore, 
one of the most important decisions and a key 
success factor, especially for free-floating carsharing 
providers, is the appropriate definition of the 
operation area. 

In the course of this paper, we use Berlin as a 
reference city, since it will be used later in the case 
study. However, the approach is generally applicable 
to any city or urban area. As a first step, we 
mathematically define the operation area. A spatial 
area � is defined as a closed polygon of at least 3 
different GPS-points, given by the following n-tuple1 
 �� � �����	 � �
�� �	 � �
������� � ��� (1) 
s.t. ���� � ������ � � � � 
 �
� � ��
� � �
� ,  

with � as latitude and � as longitude value, which 
describes the corner point of the polygon. 

In general, a free-floating carsharing business 
operates in at least one spatial region �, in which 
customer are allowed to end their rentals. In contrast, 
it is prohibited to end a rental at any location outside 
that area. Thus, an operation area � of a carsharing 
provider is defined as a set of areas� � ����� ��� 	 � ����. A rental itself is defined as the 
following 6-tuple 
 �� � ����� �� � �!�"� � ���� �� � �!�"� � #��� �� � #!�"� , (2) 
 

while � and � are again the GPS latitude and 
longitude values, and # the timestamp of the start and 
end position of the respective rental. 

To give a graphical representation, Figure 1 
visualizes the operation area, as well as the vehicle 
demand, of a usual business day for the city of Berlin 
in April 2012. The red points represent end positions 
of rentals for one day. The overall number of rentals 
on that day was more than 2,400. The blue polygons 
in Figure 1 represent the borders of different areas 
where customers are allowed to end their rentals. Of 
course, it is possible to cross these zones and to leave 
a car temporarily outside them during the course of a 
trip. However, as soon as the rental ends, the vehicle 
has to be located within the operation zone. As not all 
customers observe these rules, we see a few red 
markers outside the operation area. 

                                                 
1 For the remainder of this paper we use an overline to indicate the 
maximum value of an index. 
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Figure 1. Ended rentals in Berlin on a usual 
weekday 

Each location in Figure 1, whether inside or 
outside the permitted zones, is characterized by 
various landmarks. Obviously, some locations are 
more attractive for carsharing customers than others. 
The question arises as to which features cause this 
appeal. To answer this question, we look at regions 
with a high and dense amount of red markers. 
Thereby, we assume that the amount of ended rentals 
at a locations may be a proxy for the attractiveness of 
that respective region. Hence, we assume that 
locations with a high number of completed rentals are 
promising destinations for carsharing users, while 
locations where no rental was completed are 
considered to be unattractive. Due to the extensive 
data set, we are able to omit the settling-in period 
directly after the launch of the carsharing business. 
Thereby, we highly increase the probability that trips 
are carried out for a specific purpose and not just for 
trying out carsharing, making the above assumption 
applicable. 

By using the geographical information of each 
rental, we are also able to visualize the driving 
behavior of customers. In fact, Figure 1 already 
demonstrates the substantial level of carsharing 
activity. However, Figure 2 provides a closer look at 
the circled area in Figure 1. While a cross marker 
represents the starting point of a rental, a square 
marks the destination. Since destinations are likewise 
the locations of new start points, each square should 
be overlaid by a cross in theory. Nonetheless, Figure 
2 exhibits more squares than crosses, which is often 
caused by commuters who continue travel by public 
transport, and is one of the main reasons for the 
necessity of relocation algorithms. 

 

Figure 2. Snapshot of regional start and end 
positions of carsharing rentals 
 

Based on our data set, we found that more than 
80% of all rentals are completed within 0-30 minutes, 
while the duration exceeds two hours only for two 
percent. Evidently, customers use carsharing as a 
service for short trips rather than for longer periods of 
travel. This aligns with the perspective of using 
vehicles as a means of urban transportation in 
addition to buses or subways. Furthermore, the 
traveled distance is less than 10 kilometers for 76% 
of all trips. On average, the trip length is 
approximately 8 kilometers and, thus, rather short. 
Again, less than two percent of all rentals are longer 
than 30 kilometers, confirming the above statement 
of carsharing as an urban means of transportation. 
Concerning different times of day, almost 30% of all 
rentals take place between 4 and 8 p.m., while only 
about 5% are performed during the morning hours 
from 4 to 8 a.m. Further, there is almost no difference 
between days of the week. However, as the weekend 
draws near, the number of rentals slightly increases. 
This is associated with a shift of average end times to 
night and midday. We assume that this behavior is 
caused by societal activities, like having a drink in a 
bar, going out for dinner or a movie, or just visiting 
friends. Excluding the last activity, a special point of 
interest can be identified as the destination for each 
respective trip. Since the driving behavior changes at 
the weekend, we decide to focus only on weekdays in 
this research.  

 
4. Empirical Investigation 
 

In April 2012, the city of Berlin launched the 
largest carsharing project in the world [31]. Since that 
date the customer base, the number of vehicles, and 
size of the operation area has steadily increased, 
while managers are faced with new challenges. In 
order to make the right decisions, the ongoing 
business has to be continually analyzed by 
incorporating real-world developments. Therefore, 
we subsequently introduce a novel business analytics 
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approach based on urban features (points of interest) 
to determine the expected vehicle demand at a certain 
location. To our best knowledge, no previous 
research has been able to derive precise performance 
indicators to establish a successful carsharing 
business. 

To investigate the driving behavior of carsharing 
customers, we analyze more than 180,000 points of 
interests and their impact on driving behavior in the 
respective operation area (cf. Figure 1). To 
distinguish the POIs, they are tagged with specific 
categories, such as bar, gym, or restaurant, with 
means of public transport like bus, train, or subway 
stations also included. We assume that these 
locations are potential rental destinations for 
carsharing users, since research shows that more than 
80% of all trips are related to personal or private 
purposes, like shopping or leisure activities [21]. All 
points of interest $%  are ordered according to 
Equation 3. 
 & � �$%��'%'() (3) 
s.t. $% * ��%� �%� +% 
 + � ��,,-./#0/1�	 � 2-- 
 �+� � 34  

 +% 5 + 

 

 

Each point is defined as a tuple $% � ��%� �%� +%, 
with �%� �% as the respective GPS latitude and 
longitude values, and +% the categories the 
corresponding POI is tagged with. + defines the tuple 
of all categories, with 92 different POI types in total. 

In order to determine neighborhood features 
(POIs) at a given location and to prepare this 
information for upcoming regression analyses, we 
divide the operation area � in thousands of tiles as 
follows. 
 

6�7�� 7�� 8)� 9� � :1��� 1��� ; 1��<�1��� 1�� ; 1��<�= = > =1?)�� 1?)�� ; 1?)�<�@ (4) 

s.t. 8)� 9� A B 
 1?�< * C�?�<� �?�<D, 

 
 

with 7� and 7� as the changes in latitude and 
longitude of the edge length of each tile. The 
resulting grid 6 consists of different tiles 1?�<, (sub 
area), while the geographical coordinates represent 
the center of the respective location. As a next step, 
we need to define the edge length of each tile to 
specify the size of each sub area. This value also 
determines the granularity of the business analytics 
procedure introduced in this paper. The smaller the 
edge length of the tiles, the greater the number of 
locations considered by the approach. However, note 
that as soon as the edge length drops below a certain 

threshold, neighboring cells barely differ, while 
complexity and the required computational power 
greatly increases. This is also the reason why we 
decided to use a latitude delta of �� = 0.0009 and a 
longitude delta of �� = 0.001485, which correspond 
to an edge length of 100 meters. The resulting final 
grid consists of 80,925 individual tiles. However, 
considering Figure 1, the black rectangle that 
includes the whole visible area also includes many 
tiles that are not part of the operation area and, 
thereby, irrelevant for an initial empirical 
investigation. Hence, only a subset 6E F 6, which 
contains tiles exclusively inside the operation area, 
needs to be taken into consideration at this stage. To 
decide whether a certain location is inside or outside 
the operation area, we make use of the geographical 
information of each tile. The point in polygon 
algorithm [29] is used to face the above problem in 
linear time. 

To give a graphical representation of 6�, Figure 3 
shows a 3D visualization of the operation area 
divided into thousands of sub locations. The 
surrounding black rectangle marks the borders of the 
grid 6. The colors in Figure 3 represent the 12 
different districts of Berlin. Thereby, we are able to 
add demographic, educational, and economical 
information, such as population density, number of 
people with high or low education, unemployment 
and foreigner rates, and income per person, to each 
subarea. Since literature shows that such information 
drives carsharing success, we likewise incorporate 
this kind of data into our model. Another main reason 
for incorporating demographic data is to make the 
regression results more robust. It is possible that the 
sign of a coefficient changes because of a lack of 
demographic, educational or economical information. 

Even rather small districts will be separated into 
many sub areas to emphasize any kind of minor 
change in the urban environment. In total, we have a 

Figure 3. Operation Area Divided Into 24,280 Tiles 
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number of tiles |6�| = 24.280, representing 30% of the 
whole area represented by 6. 

In order to use the initially mentioned POIs as 
independent variables to explain the number of 
completed rentals at a given location, the vicinities of 
each of the above areas need to be defined. In the 
model of van der Goot [33], this vicinity is restricted 
to an upper bound of a 40 minute walk to the target 
location. Within this timeframe, the incentive of 
reaching the desired destination decreases linearly, 
implying the “willingness to walk” of the respective 
user. As 40 minutes appears to reflect a very 
optimistic assumption of people’s willingness to 
walk, we limit the vicinity to a radius of one 
kilometer. Thus, we assume that all POIs with a 
distance of more than one kilometer to a given 
location have no relevance, while a POI at the exact 
location has an impact of one. This also agrees with 
Tobler’s Law "Everything is related to everything 
else, but near things are more related than distant 
things" [32]. Further, we deviate from van der Groot's 
model concerning the functional form. Instead of a 
linear relationship, we use a segment of the cosine 
wave. The reason for this is that the coordinates of 
POI locations do not necessarily align with, for 
instance, the entrance to the respective building. This 
concern is especially valid for large buildings, like 
museums. The cosine wave segment reflects this 
uncertainty by only weakly discounting the first 
couple of hundred meters, followed by a basically 
linear slope as in [33]. Hence, the impact G%�?�< of a 
certain POI $%  at a given location 1?�< is calculated as 
 

G�%�?�< � HIJK LM4 N O�$%� 1?�<P � 0Q�OC$%� 1?�<D R �S� -#TU�V0WU  (5) 

s.t. G%�?�< * X A YS��Z,  
 

while the distance O�$%� 1?�< between two points $%  
and 1?�< is given as the great-circle distance on a 
sphere, calculated by the haversine formula2. 

We specify the neighborhood features of each tile 
by calculating the individual impact G%�?�< of all 
180,000 POIs on the respective tile. Thereafter, we 
derive specific POI densities [?�<�\ at each location 
by summing up all impact values of a certain 
category ]. 
 [?�<�\ � � ^ G?�<�%_`A�a���\A�b`��  (7) 
 

Essentially, instead of saying that there are 10 
bars within 1,000 meters of the center of tile, we 
consider the distance between each bar and the tile. 

                                                 
2 We consider a mean earth radius of 6,371 kilometer. 

This is of great importance if, for instance, all bars 
are within a distance of 999 meters. The resulting 
“bar-density” [?�<�c�  is only 0.016. Assuming now a 
different tile 1?d�<d that is only 10 meters from all 
bars, it would have a [?d�<d�c�  value of 9.998. 
Despite the fact that both tiles enclose the same 10 
bars within a range of 1km, the bar-density and, thus, 
the respective impact of bars on tile 1?d�<d is more 
than 600 times higher. 

Building upon the above density calculations, the 
objective of our subsequent analysis is to assess if 
POIs in general and which POI categories in 
particular increase or decrease the attractiveness of a 
location for carsharing. As a measurement for this 
attractiveness, we use the number of ended rentals O?�< in each tile. The resulting vector of dependent 
variables is Oe � CO���� O���� 	 � O?)��� O���� 	 � O?)�<� �Df. 

As might be expected, most of the cells do not 
include any rentals due to the following reasons. 
First, it may be forbidden to drive in a region, such as 
a pedestrian zone, or not possible, as in parks or 
lakes. Second, it can be assumed that some locations 
are generally uninteresting points to end a rental, for 
instance at highways. Third, the amount of zeros is 
also caused by the high granularity. Eventually, the 
total share of observed zeros is approximately 42%. 

As a next step, we define the covariate matrix g in 
Equation 8. In addition to the first column for the 
intercept, this matrix contains all POI densities, as 
well as all control variables. The numerical index of 
the densities represents the position of category ] in 
set + given an alphabetical ordering. Hence, [��h�� is 
the density of POIs tagged with “accounting” in tile 1��h, because “accounting” is the first element in an 
alphabetical ordering of all elements of set +. The 
variables 2?�<�� to 2?�<�ij are control variables, such as 
population density, education, or income per person. 
 

g �
k
lll
lm
� [����� 	 [�����b� 2����� 	 2����ij� [����� 	 [�����b� 2����� 	 2����ij= = > = = > =� [?)���� 	 [?)����b� 2?)���� 	 2?)���ij� [����� 	 [�����b� 2����� 	 2����ij= = > = = > =� [?)�<��� 	 [?)�<���b� 2?)�<��� 	 2?)�<��ijn

ooo
op

 (8) 

 

Consequently, the regression coefficients are 
given by the vector qe � Cqr� q�� 	 � q�b�� q�b�s�� 	 � q�b�sijDf, where qr is 
the coefficient for the intercept, q� to q�b� for the POI 
categories, and q�b�s� to q�b�sij for the control 
variables. 

In order to analyze the influence of the various 
POI types on Oe and to handle the high amount of 
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zeros, we subsequently introduce a zero-inflated 
regression. 
 
4.1. Zero-Inflated Regression 
 

The zero-inflated model that we use to explain Oe 
assumes two processes: a Poisson process and a zero-
generating process responsible for the excess zeroes 
[13]. Employing the pscl package in R on our data, 
the zero-inflated model is fitted using maxim-
likelihood. As the output we receive two regressions. 
The first regression is the count model and returns the 
logarithm of the expected number of rentals for each 
cell given the covariates. The second regression 
returns the logit of the probability that the number of 
rentals in a cell is zero and caused by the 
zerogenerating process for each cell given the 
covariates. 

By applying the regression model, we derive 
location-based success indicators for free-floating 
carsharing. Naturally, some of the 92 POI categories 
frequently emerge together, such as different stores, 
shops, and malls, or even built-in combinations, like 
ATMs and banks. Therefore, multicollinearity 
between different categories inevitably exists. To 
alleviate this problem, we calculate the variance 
inflation factor (VIF) for each POI category. By 
using this index, we stepwise delete categories until 
none of the remaining variables exceeds the generally 
used cut-off value of tuv = 5. Several general 
classes, like food or restaurant were thus removed, 
since they are composed of more specific categories. 
In total, 35 variables were deleted because of 
multicollinearity.  

Further, several additional categories were 
manually excluded, due to an insufficient number of 
observations. We conducted the regression analysis 
using the resulting appropriate data set of 
independent POI categories and covariates. Table 1 
displays the estimates, z values and significance 
levels of the most interesting regression output 
coefficients. With respect to research question 1, we 
can see that the airport density value is significant. 
This is also one of the most active regions for 
carsharing customers in Berlin. Interestingly, means 
of short distance transportation, like buses, are 
significantly positive, whereas train stations are 
significantly negative. This result is in accord with 
the findings of [16]. Furthermore, entertainment 
facilities, like movie theaters or night clubs, are 
potential destinations of carsharing trips. The districts 
where people leave their car are characterized by a 
high population density and foreigner rate. This could 
possibly reflect the fact that foreigners and expats are 

often only in the city for a limited time, making car 
ownership more unappealing. 

 
4.2. Geographical Weighted Regression 

 
In the following section, we analyze the results by 

using another method specifically for spatial analysis 
[17], namely the geographically weighted regression 
(GWR). This methodological concept is designed to 
explore nonstationarity in geographic parameters. 
Depending on a specific bandwidth, or in our case, 
the amount of nearest grid tiles, the estimates are set 
into spatial relationship. However, the approach 
requires caution since research has exposed flaws due 
to an increased amount of false-positives and faulty 
recognition of spatial nonstationary [22]. Therefore, 
an already fitted model – our zero-inflated Poisson 
model – is generally required before the GWR can be 
performed. Hence, our preliminary steps allow us to 
conduct a GWR to investigate the impact of various 
POI types on a local base instead of only on a global 
scope and, thereby, clarify research question 2. This 
is of particular importance if it happens that the 
coefficients vary from positive to negative values for 

Table 1 Zero-Inflated Poisson Regression Results 
Dependent variable: Number of end rentals per tile; 24,280 
observations 

POI type Coefficient (t value) 

(Intercept) 0.7630 (5.939)***  

Airport  0.1298 (6.074)*** 

ATM 0.0139 (3.172)** 

Bus station 0.0240 (12.827)*** 

Car rental 0.0219 (10.361)*** 

Car wash -0.021 (-4.601)*** 

Gas station -0.0027 (-0.568) 

Meal delivery 0.0058. (1.705) 

Meal takeaway 0.0483 (16.561)*** 

Movie rental -0.0345 (-5.285)*** 

Movie theater 0.0170 (3.642)*** 

Night club 0.0210 (13.805)*** 

Post office -0.0408 (-5.285)*** 

Shopping mall 0.0304 (5.483)*** 

Train station -0.0129 (-5.194)*** 

Distance to center 0.0122 (5.401)*** 

Foreigners  0.9654 (6.377)*** 

Age 15 – 45 -0.1943 (-1.281) 

High education -0.9742 (-5.089)*** 

Income <500 2.4242 (4.868)*** 

Log. of population density 0.2603 (7.151)*** 

Significance levels: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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a certain POI category in different areas. One reason 
for this could be that a shopping mall A is 
substantially larger and provides more popular shops 
in contrast to another shopping mall B. This entails 
the possibility that customers always prefer mall A 
instead of B resulting in a substantially lower vehicle 
demand at B. If such a case occurs, we need to make 
use of local estimates in order to explain the 
attractiveness of a certain region instead of using the 
global values of Table 1. Therefore, we conduct a 
geographically weighted regression for the whole 
operation area in Berlin. Since we initially use a zero-
inflated Poisson regression in order to handle the 
high amount of zero-observations in our data set, we 
need to take this into consideration for the GWR as 
well. The quasi-Poisson distribution is a remedy to 
this problem. It estimates a scale parameter and 
provides the best fit for our model. 

As a result of conducting a GWR based on our 
dataset, we achieve 24,280 local coefficients – one 
for each tile in 6w – for each POI category. To show 
the spatial variation of estimates, Figure 4 provides a 
visualization for the POI type “bus station”. The 
coefficient estimates from the GWR confirm the 
results of the zero-inflated Poisson regression (cf. 
Table 1). All estimates of the different POI types 
vary around the global values in Table 1, while at the 
same time no coefficient turns from positive to 
negative or vice versa. Hence, the results of the GWR 
model unveil geographic variation throughout the 
operation area without substantial effects on the 
global scope. 

 
 

Figure 4. Local Estimates of POI Type “Bus station” 
 

 
5. Validation & Managerial Implications 
 

Since we now know the impact of various POIs 
on the driving behavior of customers (research 
question 1), we will further provide managerial 

implications for carsharing providers.  The expected 
vehicle demand of a certain location is given by 
multiplying each covariate value with the respective 
coefficient. Further, we multiply this expected 
demand with the probability that the demand in the 
tile is equal to zero. 

Thereby, we are able to calculate the expected 
demand for each tile within the initially defined grid 6� and clarify research question 2. Figure 5a 
visualizes the actual vehicle demand based on three 
months of data (including more than 150,000 rentals) 
as a heat map. The dark green regions indicate a high 
number of ended trips, while white regions contain 
no rentals at all. As can be seen, there are two almost 
white areas right below the two numbers. Both 
regions are parks – 1 is the “Tiergarten” and 2 is the 
“Tempelhofer Park”. Naturally, no rentals end at 
these locations, since it is not possible to park. If we 
now have a look at Figure 5b, we clearly see the 
same patterns. Not only the dark green regions match 
the ones in Figure 5a, but the aforementioned parks 
can be recognized, as well. 

In order to investigate promising regions and to 
provide decision support for future expansion, we 
calculate the expected vehicle demand for the whole 
grid 6 (cf. Equation 4). Figure 6 illustrates attractive 
regions again as a heat map, while the model 
identifies three highly promising areas (black 
enclosed). In particular, the regions in the south and 
west seem to be a good choice for an extension, since 
a) the operation area adaption is rather small, which 
results in low expenditure, b) the area is rich in public 
transport, which is highly positively significant in 
both regression models (cf. Table 1), and c) the 
overall rental and driving behavior of the business 
model is assumed to remain the same, since the 
overall chances are only minor. 

 

(a) Actual Vehicle Demand 

2 

1
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(b) Expected Vehicle Demand 
Figure 5. Actual vs. Expected Vehicle Demand 
 

As a further managerial implication, the 
regression shows that the smaller southern areas (red 
enclosed) are unattractive for customers. Moreover, 
almost the whole south and east regions seem to 
provide no added value for carsharing businesses 
and, thus, are poor options for future expansion. If we 
look at Figure 6 as a whole, we also recognize that 
the carsharing potential of Berlin is almost exhausted 
and covered by the current operation area. Only small 
adaptions can be conducted in order to improve 
business. However, even small changes can have a 
major impact on the overall system. 

In order to provide decision support for current 
carsharing providers, our methodology can be used in 
multiple ways. On the one hand, under-performing 
areas can be identified in advance, which results in an 
enormous cost saving potential. On the other hand, 
the identification of high-performance areas can 
serve as a basis for new or incorporated into existing 
relocation strategies. Furthermore, information about 
demand at certain areas can be used to adapt the 
amount of vehicles needed at different times of the 
day, thereby increasing the overall profit of the 
carsharing provider. 

Naturally, the explanatory power of our model 
has its limitations. With a close look at the borders, 
we observe that people frequently leave their rented 
cars at the edges of the operation area. This is well-
known customer behavior since, oftentimes, 
customers do not live in the operating area and so try 
to get as close to home as possible. The same 
phenomena appears if people use carsharing for long 
trips beyond the borders of the business area. In this 
case, they naturally try to return the rented car to the 
closest (permitted) location, which is similarly next 
to one of the borders. 

 

Figure 6. Expected vehicle demand for entire grid 
 
6. Conclusion 
 

During the past decades, the popularity of 
carsharing as an alternative transportation service has 
continuously increased, turning it into one of the 
most promising businesses for sustainable 
transportation. Companies in this quickly expanding 
market are constantly required to reassess business 
strategies, expand operation areas, and react to shifts 
in demand. 

In this paper, we develop a novel method to 
support this decision-making process. Building upon 
a large dataset provided by a globally leading 
carsharing service, we investigate the influence of 
points of interest on the attractiveness of their 
surrounding vicinity for carsharing customers. With 
respect to our initial research questions, we find 
substantial evidence for a statistically significant 
relationship, employing both a zero-inflated 
regression model, as well as a geographically 
weighted regression. We show that our method is 
able to approximate the demand for vehicles very 
accurately and identify key success factors for a 
carsharing operation area, such as shopping venues or 
movie theaters. Furthermore, we can empirically 
support suggestions from related publications that 
short-distance transportation complements car-
sharing activity, while long-distance trains appear to 
be a substitute. While coefficients naturally vary 
when enabled to do so in the geographically weighted 
regression, this variation occurs around the global 
value and does not have substantial effects, such as 
changing the sign of the coefficient. Furthermore, we 
demonstrate how the presented method can be used 
to predict future demand in locations that are under 
consideration for an expansion of the operation area. 
The information provided is valuable to carsharing 
enterprises of any size. 
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Our results also emphasize the potential of using 
information provided by services such as Google 
Maps and OpenStreetMap to explain spatial variation 
in human behavior. In our future research, we will 
analyze how the accuracy of the model at the edges 
of the operation area can be improved and further 
investigate the link between explaining demand and 
predicting demand in our model [29]. To improve our 
current model, we will include border-dummies to 
cover the edge phenomena of free-floating 
carsharing. Since we use a zero-inflated model and 
the share of observed zeros is relatively high, future 
work will also focus on testing and handling 
overdispersion. Our approach also provides insights 
for day-to-day operations. Hence, we will analyze 
how the information gained can be used to derive 
optimal relocation for carsharing vehicles. 
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